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Application of the method of discrete slanting horseshoe vortices to the linear 

steady state problem of stable flow past a wing of finite span and complex plan 
shape, and of a schematized aircraft with straight edges is considered, An inte- 

gral equation is obtained for the vortex layer intensity on a wing. It is shown 
that the quadrature sums that appear in applications of this method converge to 

the integral present in the integral equation. A method of solving the indicated 
equation numerically is given, It is shown that the specified class of solutions 
of integral equation for vortex layer intensity is distinguished only by the relat- 
ive distribution of sets of discrete vortices and reference points. 

The method of discrete vortices [l - 33 provides a unique tool for investigating 
linear and nonlinear problems of steady and unsteady flow of inviscid incompressible 

0 c fluid past thin lift airfoils. The continuous vort- 
Z 

ex layer which simulates the lift airfoil is re- 

placed by a system of discrete vortices. Points, 

referred to as design points, at which conditions 
of impenetrability are satisfied are selected on 

the lift airfoil. The problem reduces to solving 
a system of linear algebraic equations for un- 

known circulations of discrete vortices. 

. 

po(3plYJ 

The considered problem of flow has several 

solutions distinguished by the behavior of the 
vortex layer intensity in the vicinity of [the air- 

XV 
foil] edges. The sought solution is obtained by 

Fig. 1 
suitable selection of the relative position of sets 

of discrete vortices and design points. The 
mathematical basis of application of this method in the linear problem of steady flow 

past a thin wing of infinite span was given in [43 for circulation and in [5] for circula- 
tion-free flows, 

Let us consider the oblique horseshoe vortex lli, of constant intensity I‘ consist- 
ing of the attached vortex (A,, A,) whose ends Al and A, are determined in the 

ZYZ -system (direction of the Oz -axis coincides with that of the unperturbed stream) 
by coordinates (zr, 0, zr) and zzy 0, zJ respectively, and of two rectilinear free vor- 
tices (A,, -+ ml and (Aa, -+ ~1 running off the ends of the attached vortex and direct- 

ed along the unperturbed streamvelocity U, (Fig. 1). We write the equation of tne 
vortex line (A,, A,) as z (z) = a + zb. Using the Biot-Savart formula we obtain for 
velocity Vzs induced by vortex 1112 at point PO (Q, ~0) the formula 
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vu = r (9 - v’) / (4n) (1) 

vh‘ = (A + rkl- $)2 + (-*o - zk)y”‘y@ (zO - “*)I, k =I, 2 

3, = x0 - a - z,,b 

Let US now consider the problem of flow paot a canonical trapezoid which may be 
considered to be a half-wing whose edges are de&red by z = 0 and z = b, which 

we shall call side edges, while the edges defined by equations z_ (I) = uD +- zbO and 

f+ (I) = a1 + r@, will be called the leading and trailing edges, respectively. 

Velocity U. of the stable stream at some distance from the canonical tramid u 
is directed along the positive axis Oz. 

The rectangular wing is a particular case of the canonical trapezoid u , One of 
its side edges may be reduced to a point. 

We represent the lift vortex layer on a by a system of oblique home&oe vortices 
Cl]. Let D 5 (0, 11 X 10, 4 be a rectangie in the plane Oak We divide wgment 

10, 11 of the W -axis in I( + 1 segments [5$, zr+;J (i = 0, i, . . ., n) 

of length k, and segment [O, II of the 01 -axis in N segments f+, qr+J (k = i7 
2 , . . 1, N) of length 4. Segmenb ]zjl~ zj+lrJ and [%I, Z,& are divided in 
half by privets zoj’ and ~a,,, , rupectively. 

Let us constder the mapping P of rectangle D on u, defined by formulas 
2 (2’, z) == 9 [z+ (z) -2_(z)l+s_(z), z=z (2) 

The Jacobian of mapping F is of the form J (z) = =+ (z) - =- (2). 

Let Jifk (zik, Zd* Ain% bttm aom) and Aj,,, (Zj,, aom) be the respective imagea of 
points 

A$ (zi’, 23, Aim1 (zi’, %II)S Aj,’ (zoj’* zom) 
Let us consider the obl&ue vortex fli,q with attached vortex (Aii;,At); -i- f). Since 
z(&, z)= a(d)+zb($), a(zl)==a”+s(al-aa), and b(S)= bei; ti(bl- 

b”), the equation of the line of the attached vortex (Air, AI.~+J is of the form zi 
(z) = 2 (ql, z). The interMy of vortex &k is determined by formula rtk = (Ptklllt 

(Pik = I (Z0k) ‘y (tim, Zo&, i = 1, . . ., n, k = 1, . ., N. In this formuia y 6% z, is 

the component on axis z of the vortex layer intensity at point A (2, z) of the canoni- 
cal trapezoid o . The v&citiec induced by oblique vortices are determined at the 

design points pj, (tjrn, zom) that are images of point? Pjm’ (zoj’, ZO,) 4 We denote 
the velocity in&rced by the oblique vortex nrk at point Pim by vim’“. velocity 
Vj, induced at point Pjm by the compkte system of oblique vortices is determined 
in conformity with form& (1) and relationship zjm = a (toil) - zo& (zoj’) by form- 

ula 
4nVjm = i c,, C, = ; q+,h$ h, ( 3) 

i=r 

C2 = *$r rbI((Pik - (Pi,k-1) hz hl* 
P _’ 

CS = sir ‘PiNAj$,N+‘hl 
i 

A$ 3 {kjtni f [(zj, - 2ik)2 + (“om - “k?]“‘] /[hj,i (Zom - ‘r)] 

?Vj,i x ~j,,, - a (s{) - zo,,,b (soj’) E J (Z,& (2oj’ - z:) 

Let uo -me &at function C?JY (z (~1, z), z) / as belongs to CWZ ZP On be recta+ 

gle D = [o, I] x [o, Z] of plane Ot’z. Function q* (t*, Z) bdonp to ClaS B* (51 
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on the rectangle 1~ bl X 1 CV dl if it is of the form ‘Ip* (zl, Z) = $ (zl, Z) X (z’ - a)-‘* 
(b-zl)+‘(z -c)-“(d -z)*‘, 0 f Y,+, p~h. < 1, k = I,2 and $ (zl, z) EH on [a, 

b] x [c, d], i. e. it satisfies the Hiilder condition over the totality of variables [b’]. Then 
applying the results of [4] and extending those for the two-dimensional singular integr- 

al of the Cauchy type [5], we find that for n - CO and N - 00 with 0 ( 6 f h, 1 

h,dT<$_m, equality (3) for velocity V (zo, zo) at point P, (to, zO) assumes 
the form .7 

(4) 

i 2 

12 = ss A (a. z, Z”, 2, 3”) 0 0 [!?$d] dxld; 

1 

I, = s A (h, x,20, 1, 20) q (2, 2)dxl 

0 

A (a, 39 x01 z* 20) = (A + I@0 - 2)Z + (zo - z)2]}“’ / [h (za - z)] 
~=J(zo)(qll-xl), xo=x(xol,zo), x=x(x1,2) 

Applying now the concept of integral in Adamard’s meaning of the finite part [7], 
taking into account the relation cp (z, z) = y (x (9, z),z)J (z) , and passing to variables 
x and s using the substitution of variables defined by mapping F, for the intensity 

y (x, z) ((z,, so) E 0) we obtain the equation 
1 

4n ss Y (x3 4 (5) 

(0) 
(zo 1 qs ( 1 + Jqx, $a+;__ _ _-)2) dx dz = v (x0* zlJ 

To determine the numerical value of intensity y (2, Z) of the vortex layer at des- 

ign points we consider the system of linear algebraic equations 

t$lk$lv:b=Vj~* i=lr...,n, m= I,..., N 

where Vj, is assumed known at points Pj ,,, on the basis of the condition of impenetr- 

ability at surface o . The sets of vortices{(Aik, Ai,r+l)9 i= 1,. . ., n; k= 1,. . . , N} 
and design points (Pj,, j = 1, . . ., n, m = 1, . . ., N} are arranged in such manner 

that the vortices are closest to the leading edge and the design points closest to the 

trailing edge. 
For analyzing the behavior of y (I, z) close to the leading and trailing edges we 

rewrite system (6) with allowance for (3) in the form 
n 

-2 
c Y (‘im’ Gem) 8 (z?) ‘I1 

x&- xi1 
= 4XVj, + Sjm 

i=l 

(7) 



204 I.K. Lifanov 

i=l 

“k 1 ’ (‘?i’) / [hj,i (‘om - zk)] 
i=l ,...,n; lTL=l , . ..t N 

According to [4] for each fixed m we have 

(4nvj'jm + 'jm) x 1~~~~1 i- a (i. m); i= I,..., n, m= 1, . . . , N 
i 

where a (i, m) --) 0 uniformly for all (z$, z,,,) E [6, 1 - 61 x [8, 1 - 61 and any 
number 6 > 0. 

System (8) shows that when system (6) has a solution, function y (z, z) which is 
the limit of that solution for n - ix) and N M 00 satisfies for any z E (0, I) the 
relations 

y(=(=l* q. qlX,,l=Y(x+(qr z)==O 

Y t= w. 2). z) I,,, = y (x_(z), 2) = 0 

Let us now consider as the lift airfoil u a wing of complex plan form with straight 
edges or a schematized aircraft [3]. 

We assume that u lies in the 0x2 -plane, and draw through the contour comer 
pointr straight lines parallel to the OS -axis. The total surface (I is then divided in- 
to canonical trapezoids ue, 8 = 1, . . ., p which intersect only along the side edges. 
Let the side edges of os be defined by the equations z = Zel and z = Id, and the 
leading and trailing edges by the equations x_~ (z) = ai + zbi, and ~,a (a) = agr f 
zb,‘, e = 1, . . ., p, respectively. 

Let US consider p specimens of planes Oxez and of rectangles D, = (0, i] x 
[I,‘, I,“] in each of these. We divide segment 10, 11 of the OtE -axis by pointsx~‘, 
z,te(i= i, . . -9 n, for a given e) at pitch he and segment [Is’, &*] by points are, 
z&e@= 1,. . . , Ns) at pitch hsa. If u, and u,, lie along the stream behindeach 

other, i.e. 1 k = lvk, k = 1, 2, we set hze = bv and, consequently, N,= N,. 
The last condition is imposed in order to have coincidence of lines of free vorticc~ run- 

ning off oe and ov . 
The oblique vortices IIik* on trapezoid ue are determined using mapping F, of 

the rectangle D, on ‘I,, defined by relations I (xe, s) = 2’ [s+* (2) - X-’ (1)) -i- 
z_~ (z) and z = Z. The Jacobian of transforms tion F, is of the form J, (2) = 2,’ (2) - 
Z_z (4. 

Taking into account the formula 
V 1p, = l-w (2 (4, x0, 29 20) / (bn) 

2% 

(9) 

R (= (2). 2,. z, to) = (G -! ;I0 ( 20 - 2 (4 
I + f[xo - 2 (qp + tzo -zp > 

which follows from (1) we obtain for velocity Vjme induced at point Pjme (sj,e,zome) 
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of trapezoid cr# by the total system of oblique vortices on o the formula 

( 10) 

wTijm = w (ZiV(Z), &, ZkV’ z;+l, z;,), xy (2) = 2 (xiv, 2) 

where Vj,,,“” is the velocity induced at point Pj,’ of trapezoid o8 by the system 
of discrete vortices on trapezoid 

(Ai;, AV 
a,,,, and ziv (z) is the equation of the line of vortex 

i,k+l) attached to that trapezoid whose end coordinates are (21~’ = z~“(zc), 
z& and (z&+~ = siv (++J, z*+& 

Let us assume that function Y (5 (z’, z), Z) 
Applying to VjmEE 

belongs to class H* on rectangle D,. 

a reasoning similar to that used previously in the case of the canon- 
ical trapezoid, noting that for v # e either z0 - z or hcV = 2 (zoer zO) - 

a (2”) - z,b (ix”) do not change signs for z0 E (I,‘, 1,“) and a E [Zvl, 1,2], and 
passing to limit for ne - =J, N, + 00, 0 < 6 < h,’ I hze, hk2/ hk”< T<+x,e,v= 

1 7.. ., p; k= 1, 2, for the velocity V (zO, ~0) at point PO (509 ~0) of the lift airfoil 

we obtain n 

(11) 

Formula (11) implies that Eq. (5) is also valid for the considered lift airfoil Q of 

complex shape. 

To determine the numerical value of solution y (t, z) at design points Pj,,,“., e - 
1 I . . ., P (i = 1, . . . . n,, m = i, . . ., N, for a given e) of surface u it is necess- 

ary to consider the system of linear algebraic equations 

( 12) 

where V$m is the velocity induced by the oblique vortex I&” of trapezoid 0, 

at point Pj,e of trapezoid oe 

The properties of system (12) imply, as before, that function y (2, Z) satisfies the 
relations 

v (stE (z), z) = 0, y (z-“(z), z) = 03, ,’ E (Z,l, 1,s) 
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